首页> 外文OA文献 >SWT voting-based color reduction method for detecting text in natural scene images
【2h】

SWT voting-based color reduction method for detecting text in natural scene images

机译:基于SWT投票的色彩还原方法在自然场景图像中检测文本

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In our PhD thesis we give a very detailed and in-depth survey of natural scene text detection methods and propose two novel methods, namely SWT (Stroke Width Transform) voting-based color reduction method and SWT direction determination method. SWT voting-based color reduction method (to which we will refer also as SWT-V) is a novel text detection method that - opposed to many other text detection methods - combines both structural and color information in order to detect text. The proposed method upgrades the text detection oriented color reduction method (to which we will refer to as TOCR) with the additional SWT voting stage and substantially outperforms other state-of-the-art text detection methods. All the image colors rich with SWT pixels that most likely belong to text characters are blocked from being mean-shifted away in the color reduction process. One of the disadvantages of the SWT method, however, is the problem of ‘light text on the dark background’ described in the following sections. To cope with the problem and in order to provide true SWT values to the SWT voting stage we propose an adaptive SWT direction determination method. The method uses SWT profiles to partition an image into subblocks and analyzes their SWT histograms of both SWT search directions. Text detection literature does not explicitly address the SWT direction issue, therefore, the proposed method represents a unique scientific contribution to the research field. All text detection methods were evaluated on the CVL OCR DB text detection evaluation dataset.
机译:在我们的博士论文中,我们对自然场景文本检测方法进行了非常详细和深入的研究,并提出了两种新颖的方法,即基于SWT(笔划宽度变换)投票的色彩还原方法和SWT方向确定方法。基于SWT投票的颜色减少方法(我们也将其称为SWT-V)是一种新颖的文本检测方法,与许多其他文本检测方法相反,该方法结合了结构信息和颜色信息以检测文本。所提出的方法通过附加的SWT投票阶段对面向文本检测的颜色减少方法(我们将其称为TOCR)进行了升级,并且大大优于其他最新的文本检测方法。在减色过程中,阻止了所有最可能属于文本字符的,富含SWT像素的图像颜色均被平均偏移。但是,SWT方法的缺点之一是以下各节中描述的“深色背景上的浅色文本”问题。为了解决该问题并为了向SWT投票阶段提供真实的SWT值,我们提出了一种自适应SWT方向确定方法。该方法使用SWT配置文件将图像划分为子块,并分析两个SWT搜索方向的SWT直方图。文本检测文献没有明确解决SWT方向问题,因此,所提出的方法代表了对研究领域的独特科学贡献。在CVL OCR DB文本检测评估数据集上评估了所有文本检测方法。

著录项

  • 作者

    Ikica, Andrej;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号